GTPase activating specificity of RGS12 and binding specificity of an alternatively spliced PDZ (PSD-95/Dlg/ZO-1) domain.

نویسندگان

  • B E Snow
  • R A Hall
  • A M Krumins
  • G M Brothers
  • D Bouchard
  • C A Brothers
  • S Chung
  • J Mangion
  • A G Gilman
  • R J Lefkowitz
  • D P Siderovski
چکیده

Regulator of G-protein signaling (RGS) proteins increase the intrinsic guanosine triphosphatase (GTPase) activity of G-protein alpha subunits in vitro, but how specific G-protein-coupled receptor systems are targeted for down-regulation by RGS proteins remains uncharacterized. Here, we describe the GTPase specificity of RGS12 and identify four alternatively spliced forms of human RGS12 mRNA. Two RGS12 isoforms of 6.3 and 5.7 kilobases (kb), encoding both an N-terminal PDZ (PSD-95/Dlg/ZO-1) domain and the RGS domain, are expressed in most tissues, with highest levels observed in testis, ovary, spleen, cerebellum, and caudate nucleus. The 5.7-kb isoform has an alternative 3' end encoding a putative C-terminal PDZ domain docking site. Two smaller isoforms, of 3.1 and 3.7 kb, which lack the PDZ domain and encode the RGS domain with and without the alternative 3' end, respectively, are most abundantly expressed in brain, kidney, thymus, and prostate. In vitro biochemical assays indicate that RGS12 is a GTPase-activating protein for Gi class alpha subunits. Biochemical and interaction trap experiments suggest that the RGS12 N terminus acts as a classical PDZ domain, binding selectively to C-terminal (A/S)-T-X-(L/V) motifs as found within both the interleukin-8 receptor B (CXCR2) and the alternative 3' exon form of RGS12. The presence of an alternatively spliced PDZ domain within RGS12 suggests a mechanism by which RGS proteins may target specific G-protein-coupled receptor systems for desensitization.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The ERBB2/HER2 receptor differentially interacts with ERBIN and PICK1 PSD-95/DLG/ZO-1 domain proteins.

Identification of protein complexes associated with the ERBB2/HER2 receptor may help unravel the mechanisms of its activation and regulation in normal and pathological situations. Interactions between ERBB2/HER2 and Src homology 2 or phosphotyrosine binding domain signaling proteins have been extensively studied. We have identified ERBIN and PICK1 as new binding partners for ERBB2/HER2 that ass...

متن کامل

Interdomain chaperoning between PSD-95, Dlg, and Zo-1 (PDZ) domains of glutamate receptor-interacting proteins.

The multiple PSD-95, Dlg, and Zo-1 (PDZ) domain protein, glutamate receptor-interacting protein (GRIP), is involved in the clustering and trafficking of the alpha-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor by directly binding to the cytoplasmic tail of the receptor's GluR2 subunit. Both the forth and fifth PDZ domains (PDZ4 and PDZ5) of GRIP are required for effective binding to t...

متن کامل

Two independent domains of hDlg are sufficient for subcellular targeting: the PDZ1-2 conformational unit and an alternatively spliced domain

hDlg, a human homologue of the Drosophila Dig tumor suppressor, contains two binding sites for protein 4.1, one within a domain containing three PSD-95/Dlg/ZO-1 (PDZ) repeats and another within the alternatively spliced I3 domain. Here, we further define the PDZ-protein 4.1 interaction in vitro and show the functional role of both 4.1 binding sites in situ. A single protease-resistant structure...

متن کامل

A model for regulation by SynGAP-α1 of binding of synaptic proteins to PDZ-domain 'Slots' in the postsynaptic density

SynGAP is a Ras/Rap GTPase-activating protein (GAP) that is a major constituent of postsynaptic densities (PSDs) from mammalian forebrain. Its α1 isoform binds to all three PDZ (PSD-95, Discs-large, ZO-1) domains of PSD-95, the principal PSD scaffold, and can occupy as many as 15% of these PDZ domains. We present evidence that synGAP-α1 regulates the composition of the PSD by restricting bindin...

متن کامل

Allosteric activation of the Par-6 PDZ via a partial unfolding transition.

Proteins exist in a delicate balance between the native and unfolded states, where thermodynamic stability may be sacrificed to attain the flexibility required for efficient catalysis, binding, or allosteric control. Partition-defective 6 (Par-6) regulates the Par polarity complex by transmitting a GTPase signal through the Cdc42/Rac interaction binding PSD-95/Dlg/ZO-1 (CRIB-PDZ) module that al...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • The Journal of biological chemistry

دوره 273 28  شماره 

صفحات  -

تاریخ انتشار 1998